Unique -closure for some -groups of rational valued functions
Usually, an abelian -group, even an archimedean -group, has a relatively large infinity of distinct -closures. Here, we find a reasonably large class with unique and perfectly describable -closure, the class of archimedean -groups with weak unit which are “-convex”. ( is the group of rationals.) Any is -convex and its unique -closure is the Alexandroff algebra of functions on defined from the clopen sets; this is sometimes .