The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the average value of the canonical height in higher dimensional families of elliptic curves

Wei Pin Wong — 2014

Acta Arithmetica

Given an elliptic curve E over a function field K = ℚ(T₁,...,Tₙ), we study the behavior of the canonical height h ̂ E ω of the specialized elliptic curve E ω with respect to the height of ω ∈ ℚⁿ. We prove that there exists a uniform nonzero lower bound for the average of the quotient ( h ̂ E ω ( P ω ) ) / h ( ω ) over all nontorsion P ∈ E(K).

Page 1

Download Results (CSV)