Oblique derivative problems for second-order hyperbolic equations with degenerate curve.
This paper deals with an application of complex analysis to second order equations of mixed type. We mainly discuss the discontinuous Poincaré boundary value problem for a second order linear equation of mixed (elliptic-hyperbolic) type, i.e. the generalized Lavrent’ev-Bitsadze equation with weak conditions, using the methods of complex analysis. We first give a representation of solutions for the above boundary value problem, and then give solvability conditions via the Fredholm theorem for integral...
Page 1