The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Hom-Lie superalgebra structures on exceptional simple Lie superalgebras of vector fields

Liping SunWende Liu — 2017

Open Mathematics

According to the classification by Kac, there are eight Cartan series and five exceptional Lie superalgebras in infinite-dimensional simple linearly compact Lie superalgebras of vector fields. In this paper, the Hom-Lie superalgebra structures on the five exceptional Lie superalgebras of vector fields are studied. By making use of the ℤ-grading structures and the transitivity, we prove that there is only the trivial Hom-Lie superalgebra structures on exceptional simple Lie superalgebras. This is...

Hom-structures on semi-simple Lie algebras

Wenjuan XieQuanqin JinWende Liu — 2015

Open Mathematics

A Hom-structure on a Lie algebra (g,[,]) is a linear map σ W g σ g which satisfies the Hom-Jacobi identity: [σ(x), [y,z]] + [σ(y), [z,x]] + [σ(z),[x,y]] = 0 for all x; y; z ∈ g. A Hom-structure is referred to as multiplicative if it is also a Lie algebra homomorphism. This paper aims to determine explicitly all the Homstructures on the finite-dimensional semi-simple Lie algebras over an algebraically closed field of characteristic zero. As a Hom-structure on a Lie algebra is not necessarily a Lie...

Page 1

Download Results (CSV)