The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Note on the ANOVA of a completely confounded factorial experiment

Wiktor Oktaba — 2005

Applicationes Mathematicae

The purpose of this paper is to present a modern approach to the analysis of variance (ANOVA) of disconnected resolvable group divisible partially balanced incomplete block (GDPBIB) designs with factorial structure and with some interaction effects completely confounded. A characterization of a factorial experiment with completely confounded interaction is given. The treatment effect estimators and some relations between the matrix F of the reduced normal equations and the information matrix A are...

Characterization of the multivariate Gauss-Markoff model with singular covariance matrix and missing values

Wiktor Oktaba — 1998

Applications of Mathematics

The aim of this paper is to characterize the Multivariate Gauss-Markoff model ( M G M ) as in () with singular covariance matrix and missing values. M G M D P 2 model and completed M G M D P 2 Q model are obtained by three transformations D , P and Q (cf. ()) of M G M . The unified theory of estimation (Rao, 1973) which is of interest with respect to M G M has been used. The characterization is reached by estimation of parameters: scalar σ 2 and linear combination λ ' B ¯ ( B ¯ = v e c B ) as in (), (), () as well as by the model of the form () (cf. Th. )....

Densities of determinant ratios, their moments and some simultaneous confidence intervals in the multivariate Gauss-Markoff model

Wiktor Oktaba — 1995

Applications of Mathematics

The following three results for the general multivariate Gauss-Markoff model with a singular covariance matrix are given or indicated. 1 determinant ratios as products of independent chi-square distributions, 2 moments for the determinants and 3 the method of obtaining approximate densities of the determinants.

Asymptotically normal confidence intervals for a determinant in a generalized multivariate Gauss-Markoff model

Wiktor Oktaba — 1995

Applications of Mathematics

By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant | σ 2 | in the MGM model ( U , X B , σ 2 V ) , > 0 , scalar σ 2 > 0 , with a matrix V 0 . A known n × p random matrix U has the expected value E ( U ) = X B , where the n × d matrix X is a known matrix of an experimental design, B is an unknown d × p matrix of parameters and σ 2 V is the covariance matrix of U , being the symbol of the Kronecker...

Page 1

Download Results (CSV)