Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Note on the ANOVA of a completely confounded factorial experiment

Wiktor Oktaba — 2005

Applicationes Mathematicae

The purpose of this paper is to present a modern approach to the analysis of variance (ANOVA) of disconnected resolvable group divisible partially balanced incomplete block (GDPBIB) designs with factorial structure and with some interaction effects completely confounded. A characterization of a factorial experiment with completely confounded interaction is given. The treatment effect estimators and some relations between the matrix F of the reduced normal equations and the information matrix A are...

Asymptotically normal confidence intervals for a determinant in a generalized multivariate Gauss-Markoff model

Wiktor Oktaba — 1995

Applications of Mathematics

By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant | σ 2 | in the MGM model ( U , X B , σ 2 V ) , > 0 , scalar σ 2 > 0 , with a matrix V 0 . A known n × p random matrix U has the expected value E ( U ) = X B , where the n × d matrix X is a known matrix of an experimental design, B is an unknown d × p matrix of parameters and σ 2 V is the covariance matrix of U , being the symbol of the Kronecker...

Characterization of the multivariate Gauss-Markoff model with singular covariance matrix and missing values

Wiktor Oktaba — 1998

Applications of Mathematics

The aim of this paper is to characterize the Multivariate Gauss-Markoff model ( M G M ) as in () with singular covariance matrix and missing values. M G M D P 2 model and completed M G M D P 2 Q model are obtained by three transformations D , P and Q (cf. ()) of M G M . The unified theory of estimation (Rao, 1973) which is of interest with respect to M G M has been used. The characterization is reached by estimation of parameters: scalar σ 2 and linear combination λ ' B ¯ ( B ¯ = v e c B ) as in (), (), () as well as by the model of the form () (cf. Th. )....

Densities of determinant ratios, their moments and some simultaneous confidence intervals in the multivariate Gauss-Markoff model

Wiktor Oktaba — 1995

Applications of Mathematics

The following three results for the general multivariate Gauss-Markoff model with a singular covariance matrix are given or indicated. 1 determinant ratios as products of independent chi-square distributions, 2 moments for the determinants and 3 the method of obtaining approximate densities of the determinants.

Page 1

Download Results (CSV)