The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On real Kähler Euclidean submanifolds with non-negative Ricci curvature

Luis A. FloritWing San HuiF. Zheng — 2005

Journal of the European Mathematical Society

We show that any real Kähler Euclidean submanifold f : M 2 n 2 n + p with either non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative nullity greater than or equal to 2 n 2 p . Moreover, if equality holds everywhere, then the submanifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global provided that M 2 n is complete. In particular, we conclude that the only real Kähler submanifolds M 2 n in 3 n that have either positive Ricci curvature or...

Page 1

Download Results (CSV)