On the Residuum of Concave Univalent Functions
2000 Mathematics Subject Classification: 30C25, 30C45. Let D denote the open unit disc and f:D→[`C] be meromorphic and injective in D. We further assume that f has a simple pole at the point p О (0,1) and is normalized by f(0) = 0 and f′(0) = 1. In particular, we are concerned with f that map D onto a domain whose complement with respect to [`C] is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions...