The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Hyperbolic components of the complex exponential family

Robert L. DevaneyNuria FagellaXavier Jarque — 2002

Fundamenta Mathematicae

We describe the structure of the hyperbolic components of the parameter plane of the complex exponential family, as started in [1]. More precisely, we label each component with a parameter plane kneading sequence, and we prove the existence of a hyperbolic component for any given such sequence. We also compare these sequences with the more commonly used dynamical kneading sequences.

Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps

Antonio GarijoXavier JarqueMónica Moreno Rocha — 2011

Fundamenta Mathematicae

We consider the family of transcendental entire maps given by f a ( z ) = a ( z - ( 1 - a ) ) e x p ( z + a ) where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of f a is known to be homeomorphic to the Sierpiński universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing...

Page 1

Download Results (CSV)