Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Computation of linear algebraic equations with solvability verification over multi-agent networks

Xianlin ZengKai Cao — 2017

Kybernetika

In this paper, we consider the problem of solving a linear algebraic equation A x = b in a distributed way by a multi-agent system with a solvability verification requirement. In the problem formulation, each agent knows a few columns of A , different from the previous results with assuming that each agent knows a few rows of A and b . Then, a distributed continuous-time algorithm is proposed for solving the linear algebraic equation from a distributed constrained optimization viewpoint. The algorithm is...

Multi-agent network flows that solve linear complementarity problems

Shu LiangXianlin Zeng — 2018

Kybernetika

In this paper, we consider linear complementarity problems with positive definite matrices through a multi-agent network. We propose a distributed continuous-time algorithm and show its correctness and convergence. Moreover, with the help of Kalman-Yakubovich-Popov lemma and Lyapunov function, we prove its asymptotic convergence. We also present an alternative distributed algorithm in terms of an ordinary differential equation. Finally, we illustrate the effectiveness of our method by simulations....

Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling

Xianlin ZengLihua DouJinqiang Cui — 2023

Kybernetika

This paper proposes a distributed accelerated first-order continuous-time algorithm for O ( 1 / t 2 ) convergence to Nash equilibria in a class of two-subnetwork zero-sum games with bilinear couplings. First-order methods, which only use subgradients of functions, are frequently used in distributed/parallel algorithms for solving large-scale and big-data problems due to their simple structures. However, in the worst cases, first-order methods for two-subnetwork zero-sum games often have an asymptotic or O ( 1 / t ) convergence....

Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems

Weiyong YuZhenhua DengHongbing ZhouXianlin Zeng — 2017

Kybernetika

This paper is concerned with solving the distributed resource allocation optimization problem by multi-agent systems over undirected graphs. The optimization objective function is a sum of local cost functions associated to individual agents, and the optimization variable satisfies a global network resource constraint. The local cost function and the network resource are the private data for each agent, which are not shared with others. A novel gradient-based continuous-time algorithm is proposed...

Page 1

Download Results (CSV)