Some properties and characterizations of -normal functions.
Let ,B and Qβ be the weighted Nevanlinna space, the Bloch space and the Q space, respectively. Note that B and are Möbius invariant, but is not. We characterize, in function-theoretic terms, when the composition operator induced by an analytic self-map ϕ of the unit disk defines an operator , , which is bounded resp. compact.
In this paper we present some new existence results for singular positone and semipositone boundary value problems of second order delay differential equations. Throughout our nonlinearity may be singular in its dependent variable.
This paper gives a full characterization of the reducing subspaces for the multiplication operator Mϕ on the Dirichlet space with symbol of finite Blaschke product ϕ of order 5I 6I 7. The reducing subspaces of Mϕ on the Dirichlet space and Bergman space are related. Our strategy is to use local inverses and Riemann surfaces to study the reducing subspaces of Mϕ on the Bergman space. By this means, we determine the reducing subspaces of Mϕ on the Dirichlet space and answer some questions of Douglas-Putinar-Wang...
Page 1