The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Using topological uniform descent, we give necessary and sufficient conditions for Browder's theorem and Weyl's theorem to hold for an operator A. The two theorems are liable to fail for 2 × 2 operator matrices. In this paper, we explore how they survive for 2 × 2 operator matrices on a Hilbert space.
"Generalized Weyl's theorem holds" for an operator when the complement in the spectrum of the B-Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues; and "generalized a-Weyl's theorem holds" for an operator when the complement in the approximate point spectrum of the semi-B-essential approximate point spectrum coincides with the isolated points of the approximate point spectrum which are eigenvalues. If T or T* is p-hyponormal or M-hyponormal then for every f ∈...
Download Results (CSV)