Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Symplectic critical surfaces in Kähler surfaces

Xiaoli HanJiayu Li — 2010

Journal of the European Mathematical Society

Let M be a Kähler surface and Σ be a closed symplectic surface which is smoothly immersed in M . Let α be the Kähler angle of Σ in M . We first deduce the Euler-Lagrange equation of the functional L = Σ 1 cos α d μ in the class of symplectic surfaces. It is cos 3 α H = ( J ( J cos α ) ) , where H is the mean curvature vector of Σ in M , J is the complex structure compatible with the Kähler form ω in M , which is an elliptic equation. We call such a surface a symplectic critical surface. We show that, if M is a Kähler-Einstein surface with nonnegative...

Page 1

Download Results (CSV)