The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the spectral radius of -shape trees

Xiaoling MaFei Wen — 2013

Czechoslovak Mathematical Journal

Let A ( G ) be the adjacency matrix of G . The characteristic polynomial of the adjacency matrix A is called the characteristic polynomial of the graph G and is denoted by φ ( G , λ ) or simply φ ( G ) . The spectrum of G consists of the roots (together with their multiplicities) λ 1 ( G ) λ 2 ( G ) ... λ n ( G ) of the equation φ ( G , λ ) = 0 . The largest root λ 1 ( G ) is referred to as the spectral radius of G . A -shape is a tree with exactly two of its vertices having maximal degree 4. We will denote by G ( l 1 , l 2 , ... , l 7 ) ( l 1 0 , l i 1 , i = 2 , 3 , ... , 7 ) a -shape tree such that G ( l 1 , l 2 , ... , l 7 ) - u - v = P l 1 P l 2 ... P l 7 , where u and...

Page 1

Download Results (CSV)