Behavior of biharmonic functions on Wiener's and Royden's compactifications
Let be a smooth Riemannian manifold of finite volume, its Laplace (-Beltrami) operator. Canonical direct-sum decompositions of certain subspaces of the Wiener and Royden algebras of are found, and for biharmonic functions (those for which ) the decompositions are related to the values of the functions and their Laplacians on appropriate ideal boundaries.