The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present monotonicity theorems for index functions of N-fuctions, and obtain formulas for exact values of packing constants. In particular, we show that the Orlicz sequence space generated by the N-function N(v) = (1+|v|)ln(1+|v|) - |v| with Luxemburg norm has the Kottman constant , which answers M. M. Rao and Z. D. Ren’s [8] problem.
Let L [0, +∞) be the Orlicz function space generated by N-function Φ(u) with Luxemburg norm. We show the exact nonsquare constant of it when the right derivative φ(t) of Φ(u) is convex or concave.
Let Φ be an N-function, then the Jung constants of the Orlicz function spaces LΦ[0,1] generated by Φ equipped with the Luxemburg and Orlicz norms have the exact value:
(i) If FΦ(t) = tφ(t)/Φ(t) is decreasing and 1 < CΦ < 2, then
JC(L(Φ)[0,1]) = JC(LΦ[0,1]) = 21/CΦ-1;
(ii) If FΦ...
Download Results (CSV)