In this paper, we prove that an element splitting operation by every pair of elements on a cographic matroid yields a cographic matroid if and only if it has no minor isomorphic to M(K₄).
This paper is based on the element splitting operation for binary matroids that was introduced by Azadi as a natural generalization of the corresponding operation in graphs. In this paper, we consider the problem of determining precisely which graphic matroids M have the property that the element splitting operation, by every pair of elements on M yields a graphic matroid. This problem is solved by proving that there is exactly one minor-minimal matroid that does not have this property.
Download Results (CSV)