We build up a multiplicative basis for a locally adequate concordant semigroup algebra by constructing Rukolaĭne idempotents. This allows us to decompose the locally adequate concordant semigroup algebra into a direct product of primitive abundant [...] 0-J*-simple semigroup algebras. We also deduce a direct sum decomposition of this semigroup algebra in terms of the [...] ℛ*-classes of the semigroup obtained from the above multiplicative basis. Finally, for some special cases, we provide a description...
An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. Let G 0 be the graph obtained from G by deleting all pendant vertices and δ(G) the minimum degree of vertices of G. In this paper, all connected tricyclic graphs G with δ(G 0) ≥ 2 and exactly two main eigenvalues are determined.
In this paper, we introduce GP-po-flatness property of S-posets over a pomonoid S, which lies strictly between principal weak po-flatness and po-torsion freeness. Furthermore, we investigate the homological classification problems of pomonoids by using this new property. Finally, we consider direct products of GP-po-flat S-posets. As an application, characterizations of pomonoids over which direct products of nonempty families of principally weakly po-flat S-posets are principally weakly po-flat...
Download Results (CSV)