Flocking analysis for a generalized Motsch-Tadmor model with piecewise interaction functions and processing delays
In this paper, a generalized Motsch-Tadmor model with piecewise interaction functions and fixed processing delays is investigated. According to functional differential equation theory and correlation properties of the stochastic matrix, we obtained sufficient conditions for the system achieving flocking, including an upper bound of the time delay parameter. When the parameter is less than the upper bound, the system achieves asymptotic flocking under appropriate assumptions.