The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The joint essential numerical range of operators: convexity and related results

Chi-Kwong LiYiu-Tung Poon — 2009

Studia Mathematica

Let W(A) and W e ( A ) be the joint numerical range and the joint essential numerical range of an m-tuple of self-adjoint operators A = (A₁, ..., Aₘ) acting on an infinite-dimensional Hilbert space. It is shown that W e ( A ) is always convex and admits many equivalent formulations. In particular, for any fixed i ∈ 1, ..., m, W e ( A ) can be obtained as the intersection of all sets of the form c l ( W ( A , . . . , A i + 1 , A i + F , A i + 1 , . . . , A ) ) , where F = F* has finite rank. Moreover, the closure cl(W(A)) of W(A) is always star-shaped with the elements in W e ( A ) as star centers....

Page 1

Download Results (CSV)