The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A note on ternary purely exponential diophantine equations

Yongzhong HuMaohua Le — 2015

Acta Arithmetica

Let a,b,c be fixed coprime positive integers with mina,b,c > 1, and let m = maxa,b,c. Using the Gel’fond-Baker method, we prove that all positive integer solutions (x,y,z) of the equation a x + b y = c z satisfy maxx,y,z < 155000(log m)³. Moreover, using that result, we prove that if a,b,c satisfy certain divisibility conditions and m is large enough, then the equation has at most one solution (x,y,z) with minx,y,z > 1.

Page 1

Download Results (CSV)