The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On normal numbers mod 2

Youngho AhnGeon Choe — 1998

Colloquium Mathematicae

It is proved that a real-valued function f ( x ) = exp ( π i χ I ( x ) ) , where I is an interval contained in [0,1), is not of the form f ( x ) = q ( 2 x ) ¯ q ( x ) with |q(x)|=1 a.e. if I has dyadic endpoints. A relation of this result to the uniform distribution mod 2 is also shown.

Page 1

Download Results (CSV)