The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
I. S. Cohen proved that any commutative local noetherian ring R that is J(R)-adic complete admits a coefficient subring. Analogous to the concept of a coefficient subring is the concept of an inertial subring of an algebra A over a commutative ring K. In case K is a Hensel ring and the module is finitely generated, under some additional conditions, as proved by Azumaya, A admits an inertial subring. In this paper the question of existence of an inertial subring in a locally finite algebra is discussed....
A ring A is called a chain ring if it is a local, both sided artinian, principal ideal ring. Let R be a commutative chain ring. Let A be a faithful R-algebra which is a chain ring such that Ā = A/J(A) is a separable field extension of R̅ = R/J(R). It follows from a recent result by Alkhamees and Singh that A has a commutative R-subalgebra R₀ which is a chain ring such that A = R₀ + J(A) and R₀ ∩ J(A) = J(R₀) = J(R)R₀. The structure of A in terms of a skew polynomial ring over R₀ is determined.
Download Results (CSV)