The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given a compact connected Lie group . For a relatively compact -invariant domain in a Stein -homogeneous space, we prove that the automorphism group of is compact and if is semisimple, a proper holomorphic self mapping of is biholomorphic.
Let X,Y be Banach spaces, f: X → Y be an isometry with f(0) = 0, and be the Figiel operator with and ||T|| = 1. We present a sufficient and necessary condition for the Figiel operator T to admit a linear isometric right inverse. We also prove that such a right inverse exists when is weakly nearly strictly convex.
A sufficient condition for boundedness on Herz-type spaces of the commutator generated by a Lipschitz function and a weighted Hardy operator is obtained.
Let X, Y be real Banach spaces and ε > 0. A standard ε-isometry f: X → Y is said to be (α,γ)-stable (with respect to for some α,γ > 0) if T is a linear operator with ||T|| ≤ α such that Tf- Id is uniformly bounded by γε on X. The pair (X,Y) is said to be stable if every standard ε-isometry f: X → Y is (α,γ)-stable for some α,γ > 0. The space X[Y] is said to be universally left [right]-stable if (X,Y) is always stable for every Y[X]. In this paper, we show that universally right-stable...
Download Results (CSV)