On a conjecture of Lemke and Kleitman
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves, for x → ∞, asymptotically like . In this article, it is proved that for every prime p, , and it is also proved that if and m is large enough. In particular, it is shown that for...
Let be a group algebra of a group over a field and the unit group of . It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group with order over any finite field of characteristic is established. We also characterize the structure of the unit group of over any finite field of characteristic and the structure of...
Let G be a finite cyclic group. Every sequence S over G can be written in the form where g ∈ G and , and the index ind(S) is defined to be the minimum of over all possible g ∈ G such that ⟨g⟩ = G. A conjecture says that every minimal zero-sum sequence of length 4 over a finite cyclic group G with gcd(|G|,6) = 1 has index 1. This conjecture was confirmed recently for the case when |G| is a product of at most two prime powers. However, the general case is still open. In this paper, we make some...
Let G be an additive finite abelian group. For every positive integer ℓ, let be the smallest positive integer t such that each sequence S over G of length |S| ≥ t has a nonempty zero-sum subsequence of length not equal to ℓ. In this paper, we determine for certain finite groups, including cyclic groups, the groups and elementary abelian 2-groups. Following Girard, we define disc(G) as the smallest positive integer t such that every sequence S over G with |S| ≥ t has nonempty zero-sum subsequences...
Page 1