The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The concept of k-connectivity κk(G), introduced by Chartrand in 1984, is a generalization of the cut-version of the classical connectivity. For an integer k ≥ 2, the k-connectivity of a connected graph G with order n ≥ k is the smallest number of vertices whose removal from G produces a graph with at least k components or a graph with fewer than k vertices. In this paper, we get a sharp upper bound for the size of G with κk(G) = t, where 1 ≤ t ≤ n − k and k ≥ 3; moreover, the unique extremal graph...
The generalized k-connectivity κk(G) of a graph G, mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λk(G) = min{λG(S) | S ⊆ V (G) and |S| = k}, where λG(S) denote the maximum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such that S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper we get a sharp...
The generalized k-connectivity κk(G) of a graph G was introduced by Hager in 1985. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λk(G) = min{λ(S) : S ⊆ V (G) and |S| = k}, where λ(S) denote the maximum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such that S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper, we study the generalized edge- connectivity of product graphs and obtain sharp upper bounds...
The generalized -connectivity of a graph was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized -edge-connectivity which is defined as and , where denotes the maximum number of pairwise edge-disjoint trees in such that for . In this paper we prove that for any two connected graphs and we have , where is the Cartesian product of and . Moreover, the bound is sharp. We also obtain the...
The concept of generalized k-connectivity κk(G), mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. The pendant tree-connectivity τk(G) was also introduced by Hager in 1985, which is a specialization of generalized k-connectivity but a generalization of the classical connectivity. Another generalized connectivity of a graph G, named k-connectivity κ′k(G), introduced by Chartrand et al. in 1984, is a generalization of the cut-version of the...
A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this paper, we shall show that 7 ≤ f(3) ≤ 9.
Download Results (CSV)