Asymptotic spectral distributions of distance-k graphs of Cartesian product graphs
Let G be a finite connected graph on two or more vertices, and the distance-k graph of the N-fold Cartesian power of G. For a fixed k ≥ 1, we obtain explicitly the large N limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of . The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.