The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The formula is proved for precompact sets M of weakly compact operators on a Banach space. Here ϱ(M) is the joint spectral radius (the Rota-Strang radius), is the Hausdorff spectral radius (connected with the Hausdorff measure of noncompactness) and r(M) is the Berger-Wang radius.
It is proved that Riesz elements in the intersection of the kernel and the closure of the image of a family of derivations on a Banach algebra are quasinilpotent. Some related results are obtained.
Download Results (CSV)