The boundary spectrum of linear operators in finite-dimensional spaces
Let ϕ(z) be an analytic function in a disk |z| < ρ (in particular, a polynomial) such that ϕ(0) = 1, ϕ(z)≢ 1. Let V be the operator of integration in , 1 ≤ p ≤ ∞. Then ϕ(V) is power bounded if and only if ϕ’(0) < 0 and p = 2. In this case some explicit upper bounds are given for the norms of ϕ(V)ⁿ and subsequent differences between the powers. It is shown that ϕ(V) never satisfies the Ritt condition but the Kreiss condition is satisfied if and only if ϕ’(0) < 0, at least in the polynomial...
The spectral problem (s²I - ϕ(V)*ϕ(V))f = 0 for an arbitrary complex polynomial ϕ of the classical Volterra operator V in L₂(0,1) is considered. An equivalent boundary value problem for a differential equation of order 2n, n = deg(ϕ), is constructed. In the case ϕ(z) = 1 + az the singular numbers are explicitly described in terms of roots of a transcendental equation, their localization and asymptotic behavior is investigated, and an explicit formula for the ||I + aV||₂ is given. For all a ≠ 0 this...
According to the von Neumann-Halperin and Lapidus theorems, in a Hilbert space the iterates of products or, respectively, of convex combinations of orthoprojections are strongly convergent. We extend these results to the iterates of convex combinations of products of some projections in a complex Banach space. The latter is assumed uniformly convex or uniformly smooth for the orthoprojections, or reflexive for more special projections, in particular, for the hermitian ones. In all cases the proof...
Page 1