The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we give a solution of a problem posed by the second author in her book, namely, to find symmetrical integral transforms of Fourier type, generalizing the cos-Fourier (sin-Fourier) transform and the Hankel transform, and suitable for dealing with the hyper-Bessel differential operators of order m>1 , β>0, , j=1,...,m. We obtain such integral transforms corresponding to hyper-Bessel operators of even order 2m and belonging to the class of the Mellin convolution type transforms...
An integral analog of the Leibniz rule for the operators of fractional calculus was considered in paper [1]. These operators are known to belong to the class of convolution transforms [2]. It seems very natural to try to obtain some new integral analog of the Leibniz rule for other convolution operators. We have found a general method for constructing such integral analogs on the base of notion of G-convolution [4]. Several results obtained by this method are represented in this article.
Download Results (CSV)