The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Hankel type integral transforms connected with the hyper-Bessel differential operators

Yurii LuchkoVirginia Kiryakova — 2000

Banach Center Publications

In this paper we give a solution of a problem posed by the second author in her book, namely, to find symmetrical integral transforms of Fourier type, generalizing the cos-Fourier (sin-Fourier) transform and the Hankel transform, and suitable for dealing with the hyper-Bessel differential operators of order m>1 B : = x - β j = 1 m ( x ( d / d x ) + β γ j ) , β>0, γ j R , j=1,...,m. We obtain such integral transforms corresponding to hyper-Bessel operators of even order 2m and belonging to the class of the Mellin convolution type transforms...

The generalizations of integral analog of the Leibniz rule on the G-convolutions.

Semyon B. YakubovichYurii F. Luchko — 1991

Extracta Mathematicae

An integral analog of the Leibniz rule for the operators of fractional calculus was considered in paper [1]. These operators are known to belong to the class of convolution transforms [2]. It seems very natural to try to obtain some new integral analog of the Leibniz rule for other convolution operators. We have found a general method for constructing such integral analogs on the base of notion of G-convolution [4]. Several results obtained by this method are represented in this article.

Page 1

Download Results (CSV)