Laplace transform of functions satisfying the Lipschitz condition
Recently it was proved for 1 < p < ∞ that , a modulus of smoothness on the unit sphere, and , a K-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range 1 < p < ∞ is optimal; that is, the equivalence does not hold either for p = ∞ or for p = 1.
Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. The results are for and for 0 < p < ∞ using the moduli of smoothness and respectively.
Suppose Δ̃ is the Laplace-Beltrami operator on the sphere and where ρ ∈ SO(d). Then and are equivalent for 1 < p < ∞. We note that for even m the relation was recently investigated by the second author. The equivalence yields an extension of the results on sharp Jackson inequalities on the sphere. A new strong converse inequality for given in this paper plays a significant role in the proof.
Page 1