The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On a Five-Diagonal Jacobi Matrices and Orthogonal Polynomials on Rays in the Complex Plane

Zagorodniuk, S. — 1998

Serdica Mathematical Journal

∗ Partially supported by Grant MM-428/94 of MESC. Systems of orthogonal polynomials on the real line play an important role in the theory of special functions [1]. They find applications in numerous problems of mathematical physics and classical analysis. It is known, that classical polynomials have a number of properties, which uniquely define them.

Analog of Favard's Theorem for Polynomials Connected with Difference Equation of 4-th Order

Zagorodniuk, S. — 2001

Serdica Mathematical Journal

Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2...

Page 1

Download Results (CSV)