The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
2000 Mathematics Subject Classification: 41A10, 30E10, 41A65.
In this paper we consider an L^2 type space of scalar functions L^2 M, A (R u iR) which can be, in particular, the usual L^2 space of scalar functions on R u iR. We find conditions for density of polynomials in this space using a connection with the L^2 space of square-integrable matrix-valued functions on R with respect to a non-negative Hermitian matrix measure. The completness of L^2 M, A (R u iR ) is also established.
Download Results (CSV)