The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

The solution of the first interior Fourier's problem with application of spline functions

Zdzisław Jabłoński — 1985

Mathematica Applicanda

Volterra's integral equation (which arises from the first interior Fourier's problem) by spline functions of the cubic polinomials. Namely, the approximate solution of this equation is represented in the form of linear combination of spline functions, which are forming the distributions of unity within the segments [0, 2] and [0,t] respectively. The error of approximation we associate on natural way with perfectin of considered distributions of unity. The estimation of the error is given at the...

Solution of the Fredholm integral equation of the second kind using spline functions

Zdzisław Jabłoński — 1982

Mathematica Applicanda

The author presents a polynomial spline function method for solution of the linear Fredholm integral equation f(s)+K1f(s)=φ(s), where K1f(s)=∫CK(s,t)f(t)dt, τ∈[0,2π], and C is a Jordan curve. The method is as follows: The approximate equation for the function fδ(s) is (1) fδ+K1δfδ=φ, where K1δ=K1Tδ, and (2) Tδf(t)=∑n−1i=0f(ti)Wi4(t)Ni1(t). Here Wi4(t) is a spline function, i.e., a 3rd degree polynomial, and Ni1(t)=1 for t∈[ti,ti+1) and Ni1(t)=0 for t∉[ti,ti+1). The substitution of (2) into (1) leads...

Page 1

Download Results (CSV)