Antidomatic number of a graph.
The paper solves one problem by E. Prisner concerning the 2-distance operator T₂. This is an operator on the class of all finite undirected graphs. If G is a graph from , then T₂(G) is the graph with the same vertex set as G in which two vertices are adjacent if and only if their distance in G is 2. E. Prisner asks whether the periodicity ≥ 3 is possible for T₂. In this paper an affirmative answer is given. A result concerning the periodicity 2 is added.
Two classes of graphs which are maximal with respect to the absence of Hamiltonian paths are presented. Block graphs with this property are characterized.
A simplex of a graph G is a subgraph of G which is a complete graph. The simplex graph Simp(G) of G is the graph whose vertex set is the set of all simplices of G and in which two vertices are adjacent if and only if they have a non-empty intersection. The simplex graph operator is the operator which to every graph G assigns its simplex graph Simp(G). The paper studies graphs which are fixed in this operator and gives a partial answer to a problem suggested by E. Prisner.
Page 1 Next