Reducing the number of fixed points of some homeomorphisms on nonprime 3-manifolds.
Let f: (X,A) → (X,A) be a relative map of a pair of compact polyhedra. We introduce a new relative homotopy invariant , which is a lower bound for the component numbers of fixed point sets of the self-maps in the relative homotopy class of f. Some properties of are given, which are very similar to those of the relative Nielsen number N(f;X,A).
Given a relative map f: (X,A) → (X,A) on a pair (X,A) of compact polyhedra and a closed subset Y of X, we shall give some criteria for Y to be the fixed point set of some map relatively homotopic to f.
Page 1