The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The construction of the extended double cover was introduced by N. Alon [1] in 1986. For a simple graph with vertex set , the extended double cover of , denoted , is the bipartite graph with bipartition where and , in which and are adjacent iff or and are adjacent in . In this paper we obtain formulas for the characteristic polynomial and the spectrum of in terms of the corresponding information of . Three formulas are derived for the number of spanning trees in for a connected...
As introduced by F. Harary in 1994, a graph is said to be an
if its vertices can be given a labeling with distinct integers so that for any two distinct vertices and of , is an edge of if and only if for some vertex in . We prove that every integral sum graph with a saturated vertex, except the complete graph , has edge-chromatic number equal to its maximum degree. (A vertex of a graph is said to be if it is adjacent to every other vertex...
Let be a simple graph. A function from the set of orientations of to the set of non-negative integers is called a continuous function on orientations of if, for any two orientations and of , whenever and differ in the orientation of exactly one edge of . We show that any continuous function on orientations of a simple graph has the interpolation property as follows: If there are two orientations and of with and , where , then for any integer such that , there are...
The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph , the set of limit points of eigenvalues of iterated subdivision digraphs of is the unit circle in the complex plane if and only if has a directed cycle. 3. Every limit point of eigenvalues of a set...
Let be a connected simple graph on vertices. The Laplacian index of , namely, the greatest Laplacian eigenvalue of , is well known to be bounded above by . In this paper, we give structural characterizations for graphs with the largest Laplacian index . Regular graphs, Hamiltonian graphs and planar graphs with the largest Laplacian index are investigated. We present a necessary and sufficient condition on and for the existence of a -regular graph of order with the largest Laplacian...
Download Results (CSV)