The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A Neighborhood Condition for Fractional ID-[A, B]-Factor-Critical Graphs

Sizhong ZhouFan YangZhiren Sun — 2016

Discussiones Mathematicae Graph Theory

Let G be a graph of order n, and let a and b be two integers with 1 ≤ a ≤ b. Let h : E(G) → [0, 1] be a function. If a ≤ ∑e∋x h(e) ≤ b holds for any x ∈ V (G), then we call G[Fh] a fractional [a, b]-factor of G with indicator function h, where Fh = {e ∈ E(G) : h(e) > 0}. A graph G is fractional independent-set-deletable [a, b]-factor-critical (in short, fractional ID-[a, b]- factor-critical) if G − I has a fractional [a, b]-factor for every independent set I of G. In this paper, it is proved...

Page 1

Download Results (CSV)