The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let S(X) denote the set of all closed subsets of a topological space X, and C(X) the set of all continuous mappings f:X → X. A family 𝓐 ⊆ S(X) is called reflexive if there exists ℱ ⊆ C(X) such that 𝓐 = {A ∈ S(X): f(A) ⊆ A for every f ∈ ℱ}. We investigate conditions ensuring that a family of closed subsets is reflexive.
Let be the space of all non-empty closed convex sets in Euclidean space ℝ ⁿ endowed with the Fell topology. We prove that for every n > 1 whereas .
For a topological space , let denote the set of all closed subsets in , and let denote the set of all continuous maps . A family is called reflexive if there exists such that for every . Every reflexive family of closed sets in space forms a sub complete lattice of the lattice of all closed sets in . In this paper, we continue to study the reflexive families of closed sets in various types of topological spaces. More necessary and sufficient conditions for certain families of closed...
A topological space is called mesocompact (sequentially mesocompact) if for every open cover of , there exists an open refinement of such that is finite for every compact set (converging sequence including its limit point) in . In this paper, we give some characterizations of mesocompact (sequentially mesocompact) spaces using selection theory.
Download Results (CSV)