The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Some sufficient conditions on the existence and multiplicity of solutions for the damped vibration problems with impulsive effects
⎧ u”(t) + g(t)u’(t) + f(t,u(t)) = 0, a.e. t ∈ [0,T
⎨ u(0) = u(T) = 0
⎩ , j = 1,...,p,
are established, where , g ∈ L¹(0,T;ℝ), f: [0,T] × ℝ → ℝ is continuous, and , j = 1,...,p, are continuous. The solutions are sought by means of the Lax-Milgram theorem and some critical point theorems. Finally, two examples are presented to illustrate the effectiveness of our results....
Download Results (CSV)