The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University,
College Station, Texas, 2000. Research partially supported by the Edmund Landau Center
for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation
(Germany).
The space K[0, 1] of differences of convex functions on the
closed interval [0, 1] is investigated as a dual Banach space. It is proved
that a continuous function f on [0, 1] belongs to K[0, 1]
It is proved that every operator from a weak*-closed subspace of into a space C(K) of continuous functions on a compact Hausdorff space K can be extended to an operator from to C(K).
Download Results (CSV)