The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a non-integer. We consider expansions of the form , where the
digits are generated by means of a Borel map defined on . We show existence and uniqueness of a -invariant probability measure, absolutely continuous with respect to , where is the Bernoulli measure on with parameter () and is the normalized Lebesgue measure on . Furthermore, this measure is of the form , where is equivalent to . We prove that the measure of maximal entropy and are mutually singular. In...
Let be a non-integer. We consider -expansions of the form
, where
the digits are generated by means of a Borel map defined on . We show that has a unique mixing measure of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure the digits form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness of -expansions....
Download Results (CSV)