Displaying similar documents to “On isomorphisms of geometrically finite Möbius groups”

Infinite group actions on spheres.

Gaven J. Martin (1988)

Revista Matemática Iberoamericana

Similarity:

This paper is mainly intended as a survey of the recent work of a number of authors concerning certain infinite group actions on spheres and to raise some as yet unanswered questions. The main thrust of the current research in this area has been to decide what topological and geometrical properties characterise the infinite conformal or Möbius groups. One should then obtain reasonable topological or geometrical restrictions on a subgroup G of the homeomorphism group of a sphere which...

Hilbert-Smith Conjecture for K - Quasiconformal Groups

Gong, Jianhua (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 30C60 A more general version of Hilbert's fifth problem, called the Hilbert-Smith conjecture, asserts that among all locally compact topological groups only Lie groups can act effectively on finite-dimensional manifolds. We give a solution of the Hilbert-Smith Conjecture for K - quasiconformal groups acting on domains in the extended n - dimensional Euclidean space.

Quasiconformal mappings onto John domains.

Juha Heinonen (1989)

Revista Matemática Iberoamericana

Similarity:

In this paper we study quasiconformal homeomorphisms of the unit ball B = B = {x ∈ R: |x| < 1} of R onto John domains. We recall that John domains were introduced by F. John in his study of rigidity of local quasi-isometries [J]; the term John domain was coined by O. Martio and J. Sarvas seventeen years later [MS]. From the various equivalent characterizations we shall adapt the following definition based on diameter carrots, cf. [V4], [V5], [NV].