The search session has expired. Please query the service again.

Displaying similar documents to “Moduli spaces of local systems and higher Teichmüller theory”

Universal tessellations.

David Singerman (1988)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

All maps of type (m,n) are covered by a universal map M(m,n) which lies on one of the three simply connected Riemann surfaces; in fact M(m,n) covers all maps of type (r,s) where r|m and s|n. In this paper we construct a tessellation M which is universal for all maps on all surfaces. We also consider the tessellation M(8,3) which covers all triangular maps. This coincides with the well-known Farey tessellation and we find many connections between M(8,3) and M.

Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants

Alex Eskin, Howard Masur, Anton Zorich (2003)

Publications Mathématiques de l'IHÉS

Similarity:

A holomorphic 1-form on a compact Riemann surface S naturally defines a flat metric on S with cone-type singularities. We present the following surprising phenomenon: having found a geodesic segment (saddle connection) joining a pair of conical points one can find with a nonzero probability another saddle connection on S having the same direction and the same length as the initial one. A similar phenomenon is valid for the families of parallel closed geodesics. We give a complete description...