Displaying similar documents to “Constrained Steiner trees in Halin graphs”

Constrained Steiner trees in Halin graphs

Guangting Chen, Rainer E. Burkard (2003)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.

Spanning tree congestion of rook's graphs

Kyohei Kozawa, Yota Otachi (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.

2-placement of (p,q)-trees

Beata Orchel (2003)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (L,R;E) be a bipartite graph such that V(G) = L∪R, |L| = p and |R| = q. G is called (p,q)-tree if G is connected and |E(G)| = p+q-1. Let G = (L,R;E) and H = (L',R';E') be two (p,q)-tree. A bijection f:L ∪ R → L' ∪ R' is said to be a biplacement of G and H if f(L) = L' and f(x)f(y) ∉ E' for every edge xy of G. A biplacement of G and its copy is called 2-placement of G. A bipartite graph G is 2-placeable if G has a 2-placement. In this paper we give all (p,q)-trees...

Approximation algorithms for metric tree cover and generalized tour and tree covers

Viet Hung Nguyen (2007)

RAIRO - Operations Research

Similarity:

Given a weighted undirected graph , a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of . Arkin, Halldórsson and Hassin (1993) give approximation algorithms with factors respectively 3.5 and 5.5. Later Könemann, Konjevod, Parekh, and Sinha (2003) study the linear programming relaxations...