Displaying similar documents to “Heuristic and metaheuristic methods for computing graph treewidth ”

Relating 2-Rainbow Domination To Roman Domination

José D. Alvarado, Simone Dantas, Dieter Rautenbach (2017)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph G, let R(G) and yr2(G) denote the Roman domination number of G and the 2-rainbow domination number of G, respectively. It is known that yr2(G) ≤ R(G) ≤ 3/2yr2(G). Fujita and Furuya [Difference between 2-rainbow domination and Roman domination in graphs, Discrete Appl. Math. 161 (2013) 806-812] present some kind of characterization of the graphs G for which R(G) − yr2(G) = k for some integer k. Unfortunately, their result does not lead to an algorithm that allows to recognize...

The complexity of short schedules for uet bipartite graphs

Evripidis Bampis (2010)

RAIRO - Operations Research

Similarity:

We show that the problem of deciding if there is a schedule of length three for the multiprocessor scheduling problem on identical machines and unit execution time tasks in -complete even for bipartite graphs, i.e. for precedence graphs of depth one. This complexity result extends a classical result of Lenstra and Rinnoy Kan [5].

The Thickness of Amalgamations and Cartesian Product of Graphs

Yan Yang, Yichao Chen (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is a measurement of the closeness to the planarity of a graph, and it also has important applications to VLSI design, but it has been known for only few graphs. We obtain the thickness of vertex-amalgamation and bar-amalgamation of graphs, the lower and upper bounds for the thickness of edge-amalgamation and 2-vertex-amalgamation of graphs, respectively. We also study...

On Generalized Sierpiński Graphs

Juan Alberto Rodríguez-Velázquez, Erick David Rodríguez-Bazan, Alejandro Estrada-Moreno (2017)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we obtain closed formulae for several parameters of generalized Sierpiński graphs S(G, t) in terms of parameters of the base graph G. In particular, we focus on the chromatic, vertex cover, clique and domination numbers.

An attractive class of bipartite graphs

Rodica Boliac, Vadim Lozin (2001)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we propose a structural characterization for a class of bipartite graphs defined by two forbidden induced subgraphs. We show that the obtained characterization leads to polynomial-time algorithms for several problems that are NP-hard in general bipartite graphs.

On partitions of hereditary properties of graphs

Mieczysław Borowiecki, Anna Fiedorowicz (2006)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper a concept 𝓠-Ramsey Class of graphs is introduced, where 𝓠 is a class of bipartite graphs. It is a generalization of well-known concept of Ramsey Class of graphs. Some 𝓠-Ramsey Classes of graphs are presented (Theorem 1 and 2). We proved that 𝓣₂, the class of all outerplanar graphs, is not 𝓓₁-Ramsey Class (Theorem 3). This results leads us to the concept of acyclic reducible bounds for a hereditary property 𝓟 . For 𝓣₂ we found two bounds (Theorem 4). An improvement,...