Note on a circular cubic having one or more sextactic points at infinity
Haridas Bagchi, Biswarup Mukherji (1951)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Haridas Bagchi, Biswarup Mukherji (1951)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Sahib Ram Mandan (1981)
Časopis pro pěstování matematiky
Similarity:
Jun Ho Lee, Stéphane R. Louboutin (2014)
Acta Arithmetica
Similarity:
Let ϵ be a totally real cubic algebraic unit. Assume that the cubic number field ℚ(ϵ) is Galois. Let ϵ, ϵ' and ϵ'' be the three real conjugates of ϵ. We tackle the problem of whether {ϵ,ϵ'} is a system of fundamental units of the cubic order ℤ[ϵ,ϵ',ϵ'']. Given two units of a totally real cubic order, we explain how one can prove that they form a system of fundamental units of this order. Several explicit families of totally real cubic orders defined by parametrized families of cubic...
R. Conti (1990)
Annales Polonici Mathematici
Similarity:
Isao Wakabayashi (2003)
Acta Arithmetica
Similarity:
Livio Zefiro, Maria Rosa Ardigo (2009)
Visual Mathematics
Similarity:
Čerin, Zvonko (2000)
Mathematica Pannonica
Similarity:
P. Pleasants (1966)
Acta Arithmetica
Similarity:
Sheldon Katz (1987)
Mathematische Zeitschrift
Similarity:
Daniel F. Coray (1976)
Compositio Mathematica
Similarity:
C. Hooley (2016)
Acta Arithmetica
Similarity:
On the assumption of a Riemann hypothesis for certain Hasse-Weil L-functions, it is shewn that a quaternary cubic form f(x) with rational integral coefficients and non-vanishing discriminant represents through integral vectors x almost all integers N having the (necessary) property that the equation f(x)=N is soluble in every p-adic field ℚₚ. The corresponding proposition for quinary forms is established unconditionally.