Further properties of pseudo-abelian varieties
Leonard Roth (1957)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Leonard Roth (1957)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Ziv Ran (1980/81)
Inventiones mathematicae
Similarity:
Giambattista Marini (1997)
Manuscripta mathematica
Similarity:
Tom Weston (2003)
Acta Arithmetica
Similarity:
D. W. Masser, G. Wüstholz (1995)
Publications Mathématiques de l'IHÉS
Similarity:
Luis Fuentes García (2004)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Joseph H. Silverman (1985)
Inventiones mathematicae
Similarity:
O. Debarre, K. Hulek, J. Spandaw (1994)
Mathematische Annalen
Similarity:
Ryuji Sasaki (1981)
Mathematische Zeitschrift
Similarity:
Olivier Debarre (1995)
Journal für die reine und angewandte Mathematik
Similarity:
Antonella Perucca (2010)
Acta Arithmetica
Similarity:
Qian Lin, Ming-Xi Wang (2015)
Acta Arithmetica
Similarity:
We prove that if a curve of a nonisotrivial family of abelian varieties over a curve contains infinitely many isogeny orbits of a finitely generated subgroup of a simple abelian variety, then it is either torsion or contained in a fiber. This result fits into the context of the Zilber-Pink conjecture. Moreover, by using the polyhedral reduction theory we give a new proof of a result of Bertrand.
Ramalho, Margarita (2001)
Portugaliae Mathematica. Nova Série
Similarity: