Displaying similar documents to “A note on fractional integration”

Fractional Hardy inequalities and visibility of the boundary

Lizaveta Ihnatsyeva, Juha Lehrbäck, Heli Tuominen, Antti V. Vähäkangas (2014)

Studia Mathematica

Similarity:

We prove fractional order Hardy inequalities on open sets under a combined fatness and visibility condition on the boundary. We demonstrate by counterexamples that fatness conditions alone are not sufficient for such Hardy inequalities to hold. In addition, we give a short exposition of various fatness conditions related to our main result, and apply fractional Hardy inequalities in connection with the boundedness of extension operators for fractional Sobolev spaces.

Fractional Hardy inequality with a remainder term

Bartłomiej Dyda (2011)

Colloquium Mathematicae

Similarity:

We prove a Hardy inequality for the fractional Laplacian on the interval with the optimal constant and additional lower order term. As a consequence, we also obtain a fractional Hardy inequality with the best constant and an extra lower order term for general domains, following the method of M. Loss and C. Sloane [J. Funct. Anal. 259 (2010)].

Fractional Hardy-Sobolev-Maz'ya inequality for domains

Bartłomiej Dyda, Rupert L. Frank (2012)

Studia Mathematica

Similarity:

We prove a fractional version of the Hardy-Sobolev-Maz’ya inequality for arbitrary domains and L p norms with p ≥ 2. This inequality combines the fractional Sobolev and the fractional Hardy inequality into a single inequality, while keeping the sharp constant in the Hardy inequality.

Theorem for Series in Three-Parameter Mittag-Leffler Function

Soubhia, Ana, Camargo, Rubens, Oliveira, Edmundo, Vaz, Jayme (2010)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification 2010: 26A33, 33E12. The new result presented here is a theorem involving series in the three-parameter Mittag-Leffler function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional differential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Leffler function.

On a Differential Equation with Left and Right Fractional Derivatives

Atanackovic, Teodor, Stankovic, Bogoljub (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05 We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations...