Bases in the spaces and
S. J. Szarek (1979-1980)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
S. J. Szarek (1979-1980)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
G. Schechtman (1978-1979)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
Z. Altshuler (1977)
Compositio Mathematica
Similarity:
Z. Ciesielski (1969)
Studia Mathematica
Similarity:
K. Kazarian (1982)
Studia Mathematica
Similarity:
Kung-Wei Yang (1971)
Compositio Mathematica
Similarity:
James R. Holub (1998)
Annales Polonici Mathematici
Similarity:
E. Tutaj has introduced classes of Schauder bases termed "unconditional-like" (UL) and "unconditional-like*" (UL*) whose intersection is the class of unconditional bases. In view of this association with unconditional bases, it is interesting to note that there exist Banach spaces which have no unconditional basis and yet have a basis of one of these two types (e.g., the space 𝓞[0,1]). In the same spirit, we show in this paper that the space of all compact operators on a reflexive Banach...
CSTUG editorial board (2009)
Zpravodaj Československého sdružení uživatelů TeXu
Similarity:
CSTUG editorial board (2009)
Zpravodaj Československého sdružení uživatelů TeXu
Similarity:
J. Lindenstrauss (1980-1981)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
Christian Rosendal (2011)
Studia Mathematica
Similarity:
We give an intrinsic characterisation of the separable reflexive Banach spaces that embed into separable reflexive spaces with an unconditional basis all of whose normalised block sequences with the same growth rate are equivalent. This uses methods of E. Odell and T. Schlumprecht.
David Dean, Ivan Singer, Leonard Stembach (1971)
Studia Mathematica
Similarity: