Displaying similar documents to “Suggestion from the Past?”

Fractional Integration and Fractional Differentiation of the M-Series

Sharma, Manoj (2008)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 33C60, 44A15 In this paper a new special function called as M-series is introduced. This series is a particular case of the H-function of Inayat-Hussain. The M-series is interesting because the pFq -hypergeometric function and the Mittag-Leffler function follow as its particular cases, and these functions have recently found essential applications in solving problems in physics, biology, engineering and applied sciences. Let us note...

Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey

Mainardi, Francesco, Gorenflo, Rudolf (2007)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05, The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classica theory of linear viscoelasticity, we contrast these two types of fractiona derivatives in their...

Linear Fractional PDE, Uniqueness of Global Solutions

Schäfer, Ingo, Kempfle, Siegmar, Nolte, Bodo (2005)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 47A60, 30C15. In this paper we treat the question of existence and uniqueness of solutions of linear fractional partial differential equations. Along examples we show that, due to the global definition of fractional derivatives, uniqueness is only sure in case of global initial conditions.

Numerical Solution of Fractional Diffusion-Wave Equation with two Space Variables by Matrix Method

Garg, Mridula, Manohar, Pratibha (2010)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05. In the present paper we solve space-time fractional diffusion-wave equation with two space variables, using the matrix method. Here, in particular, we give solutions to classical diffusion and wave equations and fractional diffusion and wave equations with different combinations of time and space fractional derivatives. We also plot some graphs for these problems with the help of MATLAB routines. ...

Some Fractional Extensions of the Temperature Field Problem in Oil Strata

Boyadjiev, Lyubomir (2007)

Fractional Calculus and Applied Analysis

Similarity:

This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands...

Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s

Stojanović, Mirjana (2010)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification 2010: 26A33, 33E12, 35S10, 45K05. We give the proofs of the existence and regularity of the solutions in the space C^∞ (t > 0;H^(s+2) (R^n)) ∩ C^0(t ≧ 0;H^s(R^n)); s ∊ R, for the 1-term, 2-term,..., n-term time-fractional equation evaluated from the time fractional equation of distributed order with spatial Laplace operator Δx ...

A Brief Story about the Operators of the Generalized Fractional Calculus

Kiryakova, Virginia (2008)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: 26A33, 33C60, 44A20 In this survey we present a brief history and the basic ideas of the generalized fractional calculus (GFC). The notion “generalized operator of fractional integration” appeared in the papers of the jubilarian Prof. S.L. Kalla in the years 1969-1979 when he suggested the general form of these operators and studied examples of them whose kernels were special functions as the Gauss and generalized hypergeometric functions,...